
Rank-ordered multifractal spectrum for intermittent fluctuations

Tom Chang
Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

Cheng-chin Wu
Institute of Geophysics and Planetary Physics, University of California, Los Angeles, California 90095, USA

�Received 27 December 2007; published 4 April 2008�

The hallmark of nonlinear complexity phenomena in magnetohydrodynamic and plasma turbulence as well
as all natural sciences is the appearance of intermittent fluctuating events. We introduce here a unique proce-
dure that is both physically explicable and quantitatively accurate in deciphering the multifractal characteristics
of intermittency. The generic character of the procedure provides a natural connection between the suggested
spectrum based on rank order and the idea of one-parameter scaling for monofractals. We demonstrate the
utility of this method using results obtained from a large scale two-dimensional magnetohydrodynamic simu-
lation mimicking solar wind turbulence.
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Nonlinear complexity phenomena in magnetohydrody-
namic �MHD� and plasma turbulence as well as other natural
sciences are inundated with the appearance of spatiotemporal
events that are intermittent and multifractal in character.
Such fluctuating events are popularly analyzed using the
structure function and/or partition function methods. These
methods investigate the multifractal characteristics of inter-
mittency based on the statistics of the full set of fluctuations.
Since most of the observed or simulated intermittent fluctua-
tions are dominated by fluctuations with small amplitudes,
the subdominant fractal characteristics of the minority
fluctuations—generally of larger amplitudes—are easily
masked by those characterized by the dominant population.
It therefore is useful to search for a procedure that explores
the singular nature of the subdominant fluctuations by first
appropriately isolating out the minority populations and then
perform statistical investigations for each of the isolated
populations. We shall demonstrate the utility of this sug-
gested rank-order method with the results of a large-scale
two-dimensional �2D� magnetohydrodynamic simulation.
The calculated spectrum suggests a crossover phenomenon
spanning from the near Gaussian characteristics of small am-
plitude fluctuations to the extreme intermittent state of large
rare events.

While we are mainly interested in the complexity phe-
nomena involving interacting stochastic fields in multiple di-
mensions, such as those related to our MHD turbulence
simulation below, we first introduce the basic concepts via a
generic fluctuating temporal event X�t�. To address the inter-
mittent characteristics, we form from X�t� a scale dependent
difference series �X�t ,��=X�t+��−X�t� of time lag � and
consider the probability distribution functions �PDFs�
P��X ,�� of �X�t ,�� for different time lag values �. If the
phenomenon represented by the fluctuating event X�t� is
monofractal, i.e., self-similar, the PDFs would scale �col-
lapse� onto one scaling function Ps as follows:

P��X,���s = Ps��X/�s� , �1�

where s is the scaling exponent. Such one-parameter scaling
has been suggested for the stock market indices �1�, mag-

netic fluctuations �2,3�, and fluctuating events of other natu-
ral or experimental systems �4�. If the PDFs are Gaussian
distributions for all time lags similar to those characterizing
self-similar random diffusion, the scaling exponent s is equal
to 0.5. For other monofractal distributions, the scaling expo-
nent may take on any real value.

In practical applications, expression �1� is sometimes ap-
proximately satisfied for the full range of the scaling variable
Y ��X /�s and sometimes only for a portion of the range of
Y. If the scaling exponent s is obtained by estimating the
values of the PDFs at �X=0, the PDFs would generally scale
at least for a range of Y close to the origin. When scaling of
the PDFs based on Eq. �1� is not fully satisfied or only ap-
proximately satisfied, the fluctuating phenomenon repre-
sented by X�t� is multifractal. One conventional method of
evaluating the degree of multifractal �intermittent� nature of
X�t� is to study the scaling behavior of the moments of the
PDFs �conventionally called the structure functions�.

Sm��� = ���X����m� = 	
0

�Xmax

��X����mP��X,��d�X , �2�

where �¯� represents the ensemble average and �Xmax is the
largest value of �X obtainable from the time series X�t� for
the time lag �. The choice of taking the ensemble average of
the absolute values of the coarse-grained differences instead
of the values of the raw differences is for the purpose of
better statistical convergence �5,6�. One then proceeds to
search for the scaling behavior Sm���
��m. If such scaling is
verified for a monofractal fluctuating event X�t�, the structure
function exponents would linearly vary with the moment or-
der as �m=�1m. This monofractal condition is satisfied by the
one-parameter scaling form �1� for PDFs with �1=s. If the
structure function exponents deviate from the above linear
relationship, the fluctuating event is multifractal. There are
several disadvantages of this approach. First, the statistical
analysis as prescribed above incorporates the full set of fluc-
tuations represented by X�t�. As with most observed PDFs,
the statistics are generally dominated by those fluctuations
with small amplitudes. Thus the fractal �multifractal� nature
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of the subdominant �larger amplitude� fluctuations is usually
masked by the fractal nature of the dominant �smaller ampli-
tude� fluctuations. Second, although deviations of the struc-
ture function exponents from the linear form would indicate
that the fluctuating event X�t� is multifractal, the physical
interpretation of the multifractal nature is not easily deci-
phered by merely examining the curvature of the deviation
from linearity. Third, the structure functions are usually ill-
defined for negative values of m. We therefore search for a
procedure that would remedy the above defects as shown
below.

From the above argument, it appears useful to individu-
ally perform statistical analyses for subsets of the fluctua-
tions that characterize the various fractal behaviors within
the full multifractal set. We recognize that such grouping of
fluctuations must depend somehow on the sizes of the fluc-
tuations. However, we also realize that groupings cannot
merely depend on the raw values of the sizes of the fluctua-
tions because the ranges will be different for different scales
�time lags ��. Thus we proceed to rank order the sizes of the
fluctuations based on the ranges of the scaled variable Y,
defined above. For each chosen range of �Y we shall assume
that the fluctuations of all time lags will exhibit monofractal
behavior and be characterized by a scaling exponent s. The
question is then how can this procedure be accomplished. We
continue by constructing the structure functions for the cho-
sen grouping of the fluctuations by performing moment—
structure function—calculations as prescribed by Eq. �2�
with the limits of the integral replaced by the end points of
the range of the chosen �Y for each time lag �. We then
search for the scaling property of the structure functions that
varies as sm. If such scaling property exists, then we have
found one region of the multifractal spectrum of the fluctua-
tions such that the PDFs in the range of �Y collapses onto
one scaled PDF. Continuing this procedure for all ranges of
�Y produces the rank-ordered multifractal spectrum s�Y�
that we are looking for. The determined values of s for each
grouping should be unaffected by the statistics of other sub-
sets of fluctuations that are not within the chosen range �Y
and therefore should be quantitatively quite accurate. The
physical meaning of this spectrum is that the PDFs for all
time lags collapse onto one master multifractal scaled PDF.
The spectrum is implicit since Y is defined as a function of s.

We demonstrate the above outlined procedure via an ex-
ample. The example is based on the results of a large-scale
2D magnetohydrodynamic simulation. In the simulation,
ideal compressible MHD equations expressed in conserva-
tive forms are numerically solved with 1024�1024 grid
points in a doubly periodic �x ,z� domain of length 2� in both
directions using the WENO code �7� so that the total mass,
energy, magnetic fluxes, and momenta are conserved. The
initial condition consists of a random magnetic field and ve-
locity with a constant total pressure for a high beta plasma.
After sufficient elapsed time, the system evolves into a set of
randomly interacting multiscale coherent structures exhibit-
ing classical aspects of intermittent fluctuations similar to
those commonly observed in solar wind turbulence
��2,3,5,8–10�, and references contained therein�. A more de-
tailed description of the simulation was reported in one of
our previous publications �3� and the data used below corre-

spond to the results of a homogeneous case at t=300 pre-
sented there. Spatial values �approximately 1�106 data
points� of the square of the strength of the magnetic field B2

are collected over the entire �x ,z� plane at a given time and
PDFs P���B2� ,�� are constructed for the absolute values of
the spatial fluctuations ��B2� at different scales, Fig. 1. Thus
in lieu of temporal fluctuations, the example considers spatial
fluctuations. The PDFs are non-Gaussian and become more
and more heavy-tailed at smaller and smaller scales.

An attempt to collapse the unscaled PDFs according to
the monofractal scaling formula that is analogous to Eq. �1�
indicates approximate scaling with an estimated scaling ex-
ponent s=0.34, Fig. 2. Structure function calculations based
on the full set of simulated fluctuations showed a nonlinear
relation between the exponents and the moment order �11�.
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FIG. 1. �Color online� Raw PDFs in scale of log10 as functions
of ��B2� for �=8 �solid curve in blue�, 16 �dotted curve in red�, and
64 �dashed curve in black�. ��B2� is in units of bin size chosen as
��B2��max� /800. There are 800 bins and only the first 400 are
shown. � is in units of grid spacing.
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FIG. 2. �Color online� Scaled PDFs in scale of log10 with s
=0.34. Same line styles and colors as in Fig. 1. Y = ��B2� /� s; ��B2�
in units of bin size and � in grid spacing.
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Because for this example the PDFs exhibited approximate
monofractal scaling, such structure function calculations—
though indicating multifractality—are strongly masked by
the population of the smaller fluctuations. Thus this example
represents an ideal candidate to test the utility of the method
described in this paper.

We now proceed to construct the rank-ordered multifrac-
tal spectrum based on the aforementioned procedure. Thus
we sort the fluctuations into ranges of �Y between �Y1, Y2�
with Y = ��B2� /� s and evaluate the rank-ordered structure
functions within each range

Sm���B2�,�� = 	
a1

a2

��B2�mP���B2�,��d���B2�� , �3�

where a1=Y1� s and a2=Y2� s. Expression �3� is a nonlinear
function of s for each moment order m. We now search for
the value�s� of s such that Sm
� sm within each range of the
fluctuations so that the rank-ordered fluctuations would ex-
hibit monofractal behavior. Interestingly there exists one and
only one value of s in each range of �Y that satisfies the
above constraint, indicating the appropriateness of the an-
satz. Unlike the structure functions defined for the full range
of fluctuations, the range-limited structure functions based
on Eq. �3� also exist for negative real values of m as long as
the range of �Y does not include Y =0. Figure 3 displays the
calculated rank-ordered spectrum s�Y� based on eight con-
tiguous ranges of �Y. It is noted that the spectrum has values
of s ranging between 0.5 and 0.0. The spectrum can be re-
fined by choosing more range intervals with smaller range
sizes of �Y, although in practice this procedure is limited by
the availability of simulated data points. At Y =0, the scaling
exponent appears to approach the self-similar Gaussian value
of 0.5. As the value of the scaled fluctuation size Y increases
the scaling exponent accordingly decreases indicating the
fluctuations are becoming more and more intermittent. At the
extremely intermittent state, the value of the scaling expo-
nent would asymptotically approach the value of zero. This
would occur at the limit of largest and rarest scaled fluctua-
tions.

For each range of �Y, the PDFs would collapse according
to their correspondingly calculated exponent value s. For ex-
ample, for the range of Y between �40, 50�, the PDFs should
collapse for the calculated value s�0.2. This is essentially
verified as shown in Fig. 4. Similarily, for the range of Y
between �0, 10�, the PDFs should collapse for the calculated
value s�0.42. This is also confirmed in Fig. 5. Figure 6
shows the results of the rank-ordered structure functions for
the range of �Y between �40, 50�. It indicates Sm
� sm only
when s=0.2.

Such an implicit multifractal spectrum has several advan-
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FIG. 3. Rank-ordered multifractal spectrum, s�Y�. Y = ��B2� /� s;
��B2� in units of bin size and � in grid spacing. The spectrum is
calculated for eight contiguous ranges of �Y.

40 45 50
10

−4

10
−3

s=0.15

40 45 50
10

−4

10
−3

s=0.2

40 45 50
10

−4

10
−3

s=0.25

δs
P

(|
δB

2 |,δ
)

40 45 50
10

−4

10
−3

s=0.3

Y

FIG. 4. �Color online� Scaled PDFs in scale of log10 for Y in
�40, 50� for s=0.15, 0.2, 0.25, and 0.3, and for �=16 �red open
circle�, 24 �black curve�, and 32 �blue open triangle�. Note the
triangles are higher than the open circles for both s=0.15 and 0.25.
When s=0.2, they are about the same. Y, B2, and � use the same
units as in Fig. 1.
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FIG. 5. �Color online� Scaled PDFs in scale of log10 for Y in �0,
10� for s=0.35, 0.42, and 0.49, and for �=16, 24, 32, 40, and 48
�various colors�. Here, Y, B2, and � use the same units as in Fig. 1.
In this range of Y, the scaling is achieved with s=0.42.
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tages over the results obtainable using the conventional
structure function and/or partition function calculations.
First, the utility of the spectrum is to fully collapse the un-
scaled PDFs. Second, the physical interpretation is clear. It

indicates how intermittent �in terms of the value of s� the
scaled fluctuations are once the value of Y is given. Third,
the determination of the values of the fractal nature of the
grouped fluctuations is not affected by the statistics of other
fluctuations that do not exhibit the same fractal characteris-
tics. Fourth, it provides a natural connection between the
one-parameter scaling idea �1� and the multifractal behavior
of intermittency.

To summarize, we have introduced a rank-ordered proce-
dure based on the sizes of the scaled fluctuations to view the
multifractal nature of intermittent fluctuations commonly ob-
served in various complexity phenomena of MHD and
plasma turbulence as well as all natural sciences. The sug-
gested implicit multifractal spectrum analysis, when appli-
cable, provides a physically meaningful description of inter-
mittency and is quantitatively accurate because of the
cleanliness of the procedure of statistical sampling. The
method can easily be generalized to situations of higher di-
mensions as well as correlation and response functions of
several independent variables involving intermittency of spa-
tiotemporal fluctuations with multiple parameters �such as
the scaled sizes as demonstrated in this Rapid Communica-
tion�.
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FIG. 6. Results of rank-ordered structure functions for Y in �40,
50� for s=0.05 ���, 0.15 ���, 0.2 ���, 0.25 ���, and 0.45 ���. �m is
defined by Sm���B2� ,��
� �m and is obtained by a linear fit of
log�Sm���B2� ,��� versus log��� for � from 16 to 32. The solid line
shows the linear function sm for s=0.2. Only for s=0.2, �m�sm.
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